The central limit theorem for stationary Markov chains under invariant splittings

نویسندگان

  • Mikhail Gordin
  • Hajo Holzmann
چکیده

The central limit theorem (CLT) for stationary ergodic Markov chains is investigated. We give a short survey of related results on the CLT for general (not necessarily Harris recurrent) chains and formulate a new sufficient condition for its validity. Furthermore, Markov operators are considered which admit invariant orthogonal splittings of the space of square-integrable functions. We show how conditions for the CLT can be improved if this additional structure is taken into account. Finally we give examples of this situation, namely endomorphisms of compact Abelian groups and random walks on compact homogeneous spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorems for Conditional Markov Chains

This paper studies Central Limit Theorems for real-valued functionals of Conditional Markov Chains. Using a classical result by Dobrushin (1956) for non-stationary Markov chains, a conditional Central Limit Theorem for fixed sequences of observations is established. The asymptotic variance can be estimated by resampling the latent states conditional on the observations. If the conditional means...

متن کامل

Limit theorems for stationary Markov processes with L2-spectral gap

Let (Xt, Yt)t∈T be a discrete or continuous-time Markov process with state space X × R where X is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. (Xt, Yt)t∈T is assumed to be a Markov additive process. In particular, this implies that the first component (Xt)t∈T is also a Markov process. Markov random walks or additive f...

متن کامل

Variance Estimation in the Central Limit Theorem for Markov Chains

This article concerns the variance estimation in the central limit theorem for finite recurrent Markov chains. The associated variance is calculated in terms of the transition matrix of the Markov chain. We prove the equivalence of different matrix forms representing this variance. The maximum likelihood estimator for this variance is constructed and it is proved that it is strongly consistent ...

متن کامل

Isometric Cocycles Related to Beam Splittings

We provide in the context of quantum Markov chains due to Accardi coming up from iterated beam splittings a limit theorem concerning with a refinement of the discrete time. The limit object refers to a continuous time and should be called quantum Markov process. Closely related to our construction of such quantum Markov processes are isometric cocycles. We derive, upto technical conditions, a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004